
XLE Getting started exporting

Max’ing it up a little bit

Exporting from Max

Exporting steps

1. Setup textures and material settings using Standard materials
2. Export using “OpenCOLLADA”
3. Preview export in MaterialTool

“Standard” material with “Blinn”

Most of the time, we can use a “Standard” material with “Blinn” lighting

Textures

Attach textures to:

1. Diffuse
2. Specular Color
3. Bump

The other ones don’t do
anything.

(Opacity must be in diffuse
alpha channel)

Install OpenCOLLADA exporter

OpenCOLLADA can be gotten from the KhronosGroup Github page:

https://github.com/KhronosGroup/OpenCOLLADA/wiki/OpenCOLLADA-Tools

Alternatively, you can download the source code and compile it yourself. For large
projects, you may find it useful to have a custom built exporter (so that you can
make modifications to the exporter as necessary).

https://github.com/KhronosGroup/OpenCOLLADA/wiki/OpenCOLLADA-Tools
https://github.com/KhronosGroup/OpenCOLLADA/wiki/OpenCOLLADA-Tools

OpenCOLLADA

Export the scene using “OpenCOLLADA”

Don’t use “Autodesk Collada”! Autodesk
Collada will sometimes work, but it
sometimes produces non standard
Collada files. OpenCOLLADA has been
tested with many models with XLE.

Default options usually good

● Check Relative Paths and Copy
Images

Technical:

● If “Tangents/Binormals” is unchecked, XLE
will generate tangents

● XLE algorithm seems to be identical to
Max, so usually doesn’t matter

.dae Collada file

The Collada exporter will generate a .dae file. This is an xml file with a text based
representation of the scene.

View in MaterialTool

We can use the MaterialTool to
preview the model in XLE.

MaterialTool can be used to
customize the material… But
normally, this isn’t required. Click!

Click!

Model cleanup

Model cleanup

Some models might require additional changes.

Here are a few common problems...

Remove mirrors

Some models have a “mirror” in the transform. This happens when there is an odd
number of negative scale values.

Use Reset XForm
to remove the
mirror.

● we can add support for mirrored transforms to XLE, if needed
(just ask)

Model units

The LevelEditor assumes a scaling of 1 unit per 1 meter.

But model files can use any units. In the .dae file, there is a configuration element:

<unit name="centimeter" meter="0.01"/>

The correct units must be specified in the Max file so that this is correctly initialized
to the right value.

LOD naming convention

LOD names should be named like this:

“$lod<number> some_name”

“$” should be the first character. And the number should be followed by a space.

LOD root nodes can appear anywhere in the hierarchy

Advanced usage

Arranging exports
Ideally we want 1:1 relationship between .max file and .
dae files

Max files often have multiple models with multiple LODs.
XLE can also support multiple models in a single export.

Imagine a scene, GenericTree.max, that contains 10
different trees. We can export all trees with a single
export (particularly handy if trees share textures).

Big projects should consider keeping dae files and max
files 1:1… This will make managing thousands of exports
easier.

Default environment/lighting config

Working/defaultenv.txt contains settings that describe the default environment
settings used in the MaterialTool

- background texture, IBL lighting, directional lights, tonemapping, shadows,
etc...

- you can export it from the LevelEditor (use the File/Export to Game
functionality)

XLE materials are Hierarchical

This is important, but a little more advanced.

Imagine we had a game with many tree models. We can create a single
“Library/Nature/nature.common” material settings file that is shared by many
models.

This contains material settings that are shared by all objects with leaves and
foliage. Setting up smart material inheritance will make managing many models
easier!

XLE materials are Hierarchical

Think about how different objects share settings...

eg:

● “flags with wind animation” share a material settings file
● “anisotropic hair” share a material settings file
● “chrome highlights” share a material settings file
● ...etc

Smart usage will save time later!

Intermediate files

XLE caches some intermediate files in the directory “int”

This is for compiled shaders and compiled models

● “int/log_*.txt” -- log files
● “int/screenshots” -- output from “cv.Screenshot”
● “int/u” -- shadowing folder (more later)
● “int/d64_0”, “int/r64_0” -- cache folder

Intermediate cache folders

● Intermediate cache folders are
categorised per configuration and per
vertex number.

○ 2 different versions of XLE can be run on the

same PC. They will use separate cache folders

to avoid conflicts.

○ Useful when comparing this week’s version to

last weeks’ version

Cache folders are locked by each app
instance. If you open 2 XLE apps at the same
time, they will each use different folders.

Model cached data

Typical cached files for a model:

● guardtowerwoodhouse.dae-skin
○ binary model data (file size == GPU in-memory size)

● guardtowerwoodhouse.dae-skin-metrics
○ debugging and profiling data
○ human readable (useful for finding problems)

● guardtowerwoodhouse.material-guardtowerwoodhouse.dae-resmat
○ binary material data

● guardtowerwoodhouse.dae-rawmat
○ material data extracted from Collada file
○ human readable

skin-metrics

This is a breakdown of how the model appears once it’s loaded into memory. You
can see how XLE interprets a model file.

● Geometry objects
○ source data for vertex buffers, index buffers, input assembly and draw calls

● Command stream
○ stream of “geo calls” and “skin calls”. These are events that invoke a draw of a geometry object

● Transformation stream
○ flattened and optimised representation of the node hierarchy
○ minimizes the number of CombineTransform operations while still allowing for animation

Reload from disk

All asset files (models, textures, placements, shaders, material files, game object
files, etc) reload from disk automatically when changed.

Try exporting from Max, or changing a texture in Photoshop with an XLE app open.
The asset will update in XLE immediately.

Programmers can apply this behaviour to any type of data file easily.

OpenCOLLADA changes texture names

The OpenCOLLADA exporter changes the texture names by adding N_* in front of
the name.

This might not be ideal for all projects. An option is to use an alternative path for
exporting textures (textures don’t have to be exported from Max, they can be
assigned in the material tool). Alternatively, modify the exporter to change texture
naming behaviour.

